
F08 – Least-squares and Eigenvalue Problems (ScaLAPACK)

Chapter F08

Least-squares and Eigenvalue Problems (ScaLAPACK)

Contents

1 Scope of the Chapter 2

2 Background to the Problems 2
2.1 Linear Least-squares Problems . 2
2.2 Orthogonal Factorizations and Least-squares Problems . 2

2.2.1 QR factorization . 2
2.3 Eigenvalue Problems . 3

2.3.1 Symmetric Eigenvalue Problem . 3
2.3.2 Hermitian Eigenvalue Problem . 4

2.4 Error and Perturbation Bounds and Condition Numbers 4
2.4.1 Least-squares problems . 4
2.4.2 The symmetric and Hermitian eigenproblem . 5

2.5 Block Algorithms . 6
2.6 Usage . 6

2.6.1 Reduction to tridiagonal form (the Symmetric Eigenvalue Problem) 6
2.6.2 Reduction to triangular form (the Hermitian Eigenvalue Problem) 8

2.7 References . 8

3 Recommendations on Choice and Use of Available Routines 8
3.1 Available Routines . 8

3.1.1 QR factorization . 8
3.1.2 The Symmetric Eigenvalue Problem . 8
3.1.3 The Hermitian Eigenvalue Problem . 9

3.2 NAG Names and ScaLAPACK Names . 9
3.3 Parameters Conventions . 9

3.3.1 Option parameters . 9
3.3.2 Problem dimensions . 9
3.3.3 Matrix data . 10
3.3.4 Error-handling and the diagnostic parameter INFO 11

3.4 Table of Available Routines . 11
3.4.1 QR factorization . 11
3.4.2 The Symmetric Eigenvalue Problem (SEP) . 11
3.4.3 The Hermitian Eigenvalue Problem (HEP) . 12

[NP3344/3/pdf] F08.1

Introduction – F08 NAG Parallel Library Manual

1 Scope of the Chapter

At this release, this chapter provides routines for the solution of linear least-squares and eigenvalue
problems. It provides routines for:

QR factorization

Routines associated with the solution of linear least-squares problems

Eigenvalues and eigenvectors of real symmetric matrices

The routines in this chapter are derived from the ScaLAPACK project (see Blackford et al. [2]) and can
handle real and complex dense matrices. They have been designed to be efficient on a wide range of
parallel computers.

2 Background to the Problems

This section gives a brief introduction to the numerical solution of linear least-squares problems. Consult
a standard textbook, for example Golub and Van Loan [3], for a more thorough discussion.

2.1 Linear Least-squares Problems

The linear least-squares problem is
min

x
‖b−Ax‖2 (1)

where A is an m by n matrix, b is a given m-element vector and x is the n-element solution vector. In
the most usual case m ≥ n and rank(A) = n, so that A has full rank and in this case the solution to
the problem of (1) is unique; the problem is also referred to as finding a least-squares solution to an
overdetermined system of linear equations.

When m < n and rank(A) = m, there are an infinite number of solutions x which exactly satisfy b−Ax
= 0. In this case it is often useful to find the unique solution x which minimizes ‖x‖2, and the problem is
referred to as finding a minimum-norm solution to an underdetermined system of linear equations.

In the general case when we may have rank(A) < min(m,n) – in other words, A may be rank-deficient
— we seek the minimum-norm least-squares solution x which minimizes both ‖x‖2 and ‖b−Ax‖2.

This chapter contains computational routines that can be combined with routines in Chapter F07 to
solve these linear least-squares problems. The next two sections discuss the factorizations that can be
used in the solution of linear least-squares problems.

2.2 Orthogonal Factorizations and Least-squares Problems

Two routines are provided for factorizing a general real or complex rectangular m by n matrix A, as
the product of an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal)
matrix. A real matrix Q is orthogonal if QTQ = I; a complex matrix Q is unitary if QHQ = I.
Orthogonal or unitary matrices have the important property that they leave the two-norm of a vector
invariant, so that

‖x‖2 = ‖Qx‖2.

They help to maintain numerical stability because they do not amplify rounding errors. Orthogonal
factorizations are used in the solution of linear least-squares problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by

A = Q

(
R
0

)
, if m ≥ n,

where R is an n by n upper triangular matrix and Q is an m by m orthogonal (or unitary) matrix. If A
is of full rank n, then R is non-singular.

F08.2 [NP3344/3/pdf]

F08 – Least-squares and Eigenvalue Problems (ScaLAPACK) Introduction – F08

It is sometimes convenient to write the factorization as

A = (Q1Q2)
(

R
0

)

which reduces to
A = Q1R,

where Q1 consists of the first n columns of Q, and Q2 the remaining m− n columns.

If m < n, R is trapezoidal, and the factorization can be written

A = Q (R1R2)

where R1 is upper triangular and R2 is rectangular.

The QR factorization can be used to solve the linear least-squares problem of (1) when m ≥ n and A is
of full rank, since

‖b− Ax‖2 = ‖QT b−QTAx‖2 =
∥∥∥∥ c1 −Rx

c2

∥∥∥∥
2

for real A, where

c ≡
(

c1
c2

)
=

(
QT

1 b

QT
2 b

)
= QT b

and c1 is an n-element vector. Similarly,

‖b−Ax‖2 = ‖QHb−QHAx‖2 =
∥∥∥∥ c1 −Rx

c2

∥∥∥∥
2

for complex A, where

c ≡
(

c1
c2

)
=

(
QH

1 b

QH
2 b

)
= QHb.

In either case, x is the solution of the upper triangular system

Rx = c1.

The residual vector r is given by

r = b−Ax = Q

(
0
c2

)
.

The residual sum of squares ‖r‖2
2 may be computed without forming r explicitly, since

‖r‖2 = ‖b−Ax‖2 = ‖c2‖2.

2.3 Eigenvalue Problems
2.3.1 Symmetric Eigenvalue Problem

Let A be a real square symmetric matrix of order n. The symmetric eigenvalue problem is to find
eigenvalues, λ, and corresponding eigenvectors, z �= 0, such that

Az = λz. (2)

The phrase ‘eigenvalue problem’ is sometimes abbreviated to eigenproblem.

The eigenvalues λ are all real, and the eigenvectors can be chosen to be mutually orthogonal. That is,
we can write

Azi = λizi for i = 1, . . . , n

or equivalently:
AZ = ZΛ (3)

where Λ is a real diagonal matrix whose diagonal elements λi are the eigenvalues, and Z is a real orthogonal
matrix whose columns zi are the eigenvectors. This implies that zT

i zj = 0 if i �= j, and ‖zi‖2 = 1 where
zT

i denotes the transpose of the vector zi.

[NP3344/3/pdf] F08.3

Introduction – F08 NAG Parallel Library Manual

Equation (3) can be rewritten
A = ZΛZT . (4)

This is known as the eigendecomposition or spectral factorization of A.

Eigenvalues of a real symmetric matrix are well conditioned, that is, they are not unduly sensitive to
perturbations in the original matrix A. The sensitivity of an eigenvector depends on how small the gap is
between its eigenvalue and any other eigenvalue; the smaller the gap, the more sensitive the eigenvector.

The basic task of the symmetric eigenproblem routines is to compute values of λ and, optionally,
corresponding vectors z for a given matrix A. The computation of eigenvalues proceeds in the following
two stages.

(1) The real symmetric matrix A is reduced to real tridiagonal form T as the decomposition
A = QTQT with Q orthogonal and T symmetric tridiagonal.

(2) Eigenvalues of the real symmetric tridiagonal matrix T are computed. If all eigenvalues and
eigenvectors are computed, this is equivalent to factorizing T as T = SΛST , where S is orthogonal
and Λ is diagonal. The diagonal entries of Λ are the eigenvalues of T , which are also the eigenvalues
of A, and the columns of S are the eigenvectors of T ; the eigenvectors of A are the columns of
Z = QS, so that A = ZΛZT .

2.3.2 Hermitian Eigenvalue Problem

The Hermitian eigenvalue problem is similar to the symmetric eigenvalue problem. In the Hermitian
eigenvalue problem, the matrix A is complex but the eigenvalues of A are real. However, the eigenvectors
zi, i = 1, . . . , n are, in general, complex. The eigendecomposition is given by

A = ZΛZH (5)

where the matrix Z is now unitary. That is, zH
i zj = 0 if i �= j, and ‖zi‖2 = 1 where zH

i represents the
complex conjugate transpose of the vector zi.

2.4 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data on the solution to the problem. First we discuss some notation used in the
error bounds of later sections. The bounds usually contain the factor p(n) (or p(m,n)), which grows
as a function of the matrix dimensions m and n. It measures how errors can grow as a function of
the matrix dimension, and represents a potentially different function for each problem. In practice, it
usually grows just linearly; p(n) ≤ 10n is often true, although generally only much weaker bounds can be
actually proved. We normally describe p(n) as a ‘modestly growing’ function of n. For linear equation
(see Chapter F07) and least-squares solvers, we consider bounds on the relative error ‖x− x̂‖/‖x‖ in the
computed solution x̂, where x is the true solution.

Finally, we remark on the accuracy of the bounds when they are large. Relative errors like ‖x̂− x‖/‖x‖
are only of interest when they are much less than 1. Some stated bounds are not strictly true when they
are close to 1, but rigorous bounds are much more complicated and supply little extra information in the
interesting case of small errors. These bounds are indicated by using the symbol <∼ , or ‘approximately
less than’, instead of the usual ≤. Thus, when these bounds are close to 1 or greater, they indicate that
the computed answer may have no significant digits at all, but do not otherwise bound the error.

2.4.1 Least-squares problems

The conventional error analysis of linear least-squares problems goes as follows. The problem is to find
the solution x minimizing ‖b−Ax‖2. Let x̂ be the solution computed using the method described above.
We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and
has full rank. Then the computed solution x̂ has a small normwise backward error. In other words x̂
minimizes ‖(A+ E)x̂ − (b+ f)‖2, where

max
(
‖E‖2

‖A‖2
,
‖f‖2

‖b‖2

)
≤ p(n) ε

F08.4 [NP3344/3/pdf]

F08 – Least-squares and Eigenvalue Problems (ScaLAPACK) Introduction – F08

and p(n) is a modestly growing function of n. Let κ2(A) = σmax(A)/σmin(A), ρ = ‖b − Ax‖2, and
sin(θ) = ρ/‖b‖2, where σi(A) denotes the ith singular value of A. Then if p(n)ε is small enough, the error
x̂− x is bounded by

‖x− x̂‖2

‖x‖2

<∼ p(n)ε
(
2κ2(A)
cos(θ)

+ tan(θ)κ2
2(A)

)
.

If A is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See Golub and Van Loan [3] for error bounds in this case, as well as
for the underdetermined case.

The solution of the overdetermined, full-rank problem may also be characterized as the solution of the
linear system of equations (

I A

AT 0

) (
r
x

)
=

(
b
0

)

or (
I A

AH 0

)(
r
x

)
=

(
b
0

)

if A is complex. By solving this linear systems (see Chapter F07) componentwise error bounds can also
be obtained (see Golub and Van Loan [3]).

2.4.2 The symmetric and Hermitian eigenproblem

The usual error analysis of the symmetric and Hermitian eigenproblem is as follows Koelbel et al. [7].

The computed eigendecomposition ẐΛ̂Ẑ is nearly the exact eigendecomposition of A+ E, i.e., A+ E =
(Ẑ + δẐ)Λ̂(Ẑ + δẐ)H is the true eigendecomposition so that Ẑ + δẐ is orthogonal, where ‖E‖2/‖A‖2 ≤
p(n)ε and ‖δẐ‖2 ≤ p(n)ε and p(n) is a modestly growing function of n. Each computed eigenvalue λ̂i

differs from the true λi by an amount satisfying the bound

|λ̂i − λi| ≤ p(n)ε‖A‖2.

Thus large eigenvalues (those near max
i

|λi| = ‖A‖2) are computed to high relative accuracy and small
ones may not be.

The angular difference between the computed unit eigenvector ẑi and the true zi satisfies the approximate
bound

θ(ẑi, zi) <∼
p(n)ε‖A‖2

gapi

if p(n)ε is small enough, where
gapi = min

j �=i
|λi − λj |

is the absolute gap between λi and the nearest other eigenvalue. Thus, if λi is close to other eigenvalues,
its corresponding eigenvector zi may be inaccurate. The gaps may be easily obtained from the computed
eigenvalues.

Let Ŝ be the invariant subspace spanned by a collection of eigenvectors {ẑi, i ∈ I}, where I is a subset of
the integers from 1 to n. Let S be the corresponding true subspace. Then

θ(Ŝ, S) <∼
p(n)ε‖A‖2

gapI

where
gapI = min{|λi − λj | for i ∈ I, j �∈ I}

is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of close
eigenvalues which is far away from any other eigenvalue may have a well determined invariant subspace
Ŝ even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix T , routines in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson et al.[1] for further details.

[NP3344/3/pdf] F08.5

Introduction – F08 NAG Parallel Library Manual

2.5 Block Algorithms

The routines in this chapter use what is termed a block-partitioned algorithm. This means that at
each major step of the algorithm a block of rows or columns is updated, and most of the computation is
performed by matrix–matrix operations on these blocks. Blocks are distributed among the participating
processors in a cyclic two-dimensional block fashion (see Section 2.6). The matrix–matrix operations are
performed by calls to the Level-3 PBLAS (Parallel BLAS) (see Blackford et al. [2]), which rely on the
communication primitives provided by the Basic Linear Algebra Communication Subprograms or BLACS
(Blackford et al. [2]). See Golub and Van Loan [3] or Anderson et al. [1] for more information about
block-partitioned algorithms. The performance of a block-partitioned algorithm varies to some extent
with the block size – that is, the number of rows or columns per block.

2.6 Usage

The routines in this chapter use a cyclic two-dimensional block distribution for all matrices and
vectors, in order to try to minimise data movement. This distribution is such that row blocks of the
matrix are distributed in wrapped fashion to the associated row of the logical grid of processors and,
likewise, column blocks are distributed in wrapped fashion to the associated column of the logical grid of
processors. Here the terms row block and column block refer to one or more contiguous rows or columns
of a matrix which are treated as a single entity from the algorithmic point of view. For those familiar with
High Performance Fortran (HPF) terminology this is equivalent to !HPF$ DISTRIBUTE CYCLIC(MB),
CYCLIC(NB) where MB and NB are the row and column blocking factors of the matrix distribution.
See Koelbel et al. [6].

1

2

3

4

5

6

7

9

10

12

11

8

 1 2 3 4 5 6 7 8 9 10 11 12

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

{0,0} {0,2}

{1,2}{1,1}

{0,1}

{1,0}

Figure 1
Block distribution over a 2 by 3 logical grid of processors

Figure 1 shows how blocks of a matrix are distributed over a 2 by 3 logical grid of processors: the matrix
has 12 column and 12 row blocks; the column and row indices in Figure 1 indicate row and column blocks,
respectively. Each box contains the index of the processor storing that particular block. The shading is
provided only as a visual aid to highlight the processor template and has no other meaning.

Figure 2 shows the same distribution from the processors’ point of view. Each of the larger boxes in
Figure 2 is labelled by the index of the processor which stores the blocks that the box contains. The
indices of the rows and columns in Figure 2 denote the indices of the row and column blocks.

2.6.1 Reduction to tridiagonal form (the Symmetric Eigenvalue Problem)

The eigenproblem algorithm in this chapter reduces an n by n real symmetric matrix A to tridiagonal
form T by an orthogonal similarity transformation Q

QTAQ = T.

F08.6 [NP3344/3/pdf]

F08 – Least-squares and Eigenvalue Problems (ScaLAPACK) Introduction – F08

1

3

5

7

9

 11

 1 4 7 10 2 5 8 11 3 6 9 12

{0,0} {0,1} {0,2}

{1,0} {1,1} {1,2}

2

4

6

8

10

12

Figure 2
Data distribution from the processors’ point of view

Since A is real symmetric, only the the upper triangular part or the lower triangular part is required.

The diagonal elements of the tridiagonal matrix T are represented by a vector d of length n and the
off-diagonal elements by a vector e. On exit, the vector d is distributed in the cyclic one-dimensional
block form across each logical processor row of the two-dimensional logical processor grid. The vector e
is similarly distributed.

The orthogonal matrix Q is not formed explicitly but is represented as a product of n − 1 elementary
reflectors. If the data in the upper triangular part of the symmetric matrix As is used in the computation
(i.e., the argument UPLO = ’U’), the matrix Q is represented as a product of elementary reflectors

Q = Hn−1 . . . H2H1.

Each Hi has the form
Hi = I − τiv

(i)(v(i))T

where τi is a real scalar, and v(i) is a real vector with v
(i)
j = 0, j = i + 1, . . . , n and v

(i)
i = 1; v

(i)
j ,

j = 1, . . . , i− 1 is stored on exit in A(1:i− 2,i+ 1), and τi in TAU(i − 1). The contents of the array A
on exit are illustrated by the following example with m = 6:




d1 e1 v
(2)
1 v

(3)
1 v

(4)
1 v

(5)
1

d2 e
(2)
2 v

(3)
2 v

(4)
2 v

(5)
2

d3 e
(3)
3 v

(4)
3 v

(5)
3

d4 e4 v
(5)
4

d5 e5

d6



.

where τi is a real scalar, and v(i) is a real vector with v
(i)
j = 0, j = 1, . . . , i and v

(i)
i+1 = 1; v(i)

j , j = i+2, . . . , n
is stored on exit in A(i+ 2 : n, i), and τi in TAU(i− 1).

In the lower triangular case (UPLO = ’L’), the contents of the array A on exit are in the form:



d1

e1 d2

v
(1)
3 e2 d3

v
(1)
4 v

(2)
4 e3 d4

v
(1)
5 v

(2)
5 v

(3)
5 e4 d5

v
(1)
6 v

(2)
6 v

(3)
6 v

(4)
6 e5 d6



.

[NP3344/3/pdf] F08.7

Introduction – F08 NAG Parallel Library Manual

2.6.2 Reduction to triangular form (the Hermitian Eigenvalue Problem)

This is identical to that of the Symmetric Eigenvalue Problem except that the transpose operation (.)T

is now replaced by the complex conjugate operation (.)H .

Note that the tridiagonal matrix is real symmetric.

2.7 References

[1] Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling
S, McKenney A, Blackford S and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia

[2] Blackford L S, Choi J, Cleary A, D’Azevedo E, Demmel J, Dhillon I, Dongarra J, Hammarling
S, Henry G, Petitet A, Stanley K, Walker D and Whaley R C (1997) ScaLAPACK Users’
Guide SIAM 3600 University City Science Center, Philadelpia, PA 19104-2688, USA. URL:
http://www.netlib.org/scalapack/slug/scalapack slug.html

[3] Golub G H and van Loan C F (1996) Matrix Computations Johns Hopkins University Press (3rd
Edition), Baltimore

[4] Gropp W, Lusk E and Skjellum A (1999) Using MPI: Portable Programming with the Message-
passing Interface The MIT Press, Cambridge, MA, USA (2nd Edition)

[5] Hestenes M R (1958) Inversion of matrices by biorthogonalization and related results J. SIAM 6
51–90

[6] Koelbel C H, Loveman D B, Schreiber R S, Steele Jr. G L, and Zosel M E (1994) The High
Performance Fortran Handbook The MIT Press, Cambridge, MA, USA

[7] Parlett B N (1980) The Symmetric Eigenvalue Problem Prentice–Hall

[8] Snir M, Otto S W, Huss-Lederman S, Walker D W and Dongarra J J (1998) MPI - The Complete
Reference: Volume 1 - The MPI Core The MIT Press, Cambridge, MA, USA (2nd Edition)

[9] Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, London

3 Recommendations on Choice and Use of Available Routines
3.1 Available Routines

Note. Refer to the Users’ Note for your implementation to check that a routine is available.

The tables in Section 3.4 shows the routines which are provided in this chapter (Chapter F08). Each
entry in the table gives the NAG name and the ScaLAPACK double precision name.

3.1.1 QR factorization

Routines are provided to perform the following computations:

(a) QR factorization
(b) Generation of the orthogonal or unitary matrix Q after the QR factorization
(c) Application of the orthogonal or unitary matrix Q to a general matrix without forming Q explicitly

To solve a least-squares problem, first the QR factorization is performed, then the right-hand side is
transformed by applying QT or QH from the left; finally the resulting system of triangular equations can
be solved using the PBLAS (Parallel BLAS) routine PDTRSM or PZTRSM (see Blackford et al. [2]).

3.1.2 The Symmetric Eigenvalue Problem

Routines are provided to perform the following computations:

(a) Reduction of a real symmetric matrix to a real symmetric tridiagonal form.
(b) Computation of eigenvalues of a real symmetric tridiagonal matrix.
(c) Computation of eigenvectors of a real symmetric tridiagonal matrix.
(d) Transformation of the eigenvectors of the tridiagonal matrix to the original matrix in step (a).
(e) Multiplication of a real matrix by a real orthogonal matrix.

F08.8 [NP3344/3/pdf]

F08 – Least-squares and Eigenvalue Problems (ScaLAPACK) Introduction – F08

3.1.3 The Hermitian Eigenvalue Problem

Routines are provided to perform the following computations:

(a) Reduction of a complex Hermitian matrix to a real symmetric tridiagonal form.
(b) Computation of eigenvalues of a real symmetric tridiagonal matrix.
(c) Computation of eigenvectors of a real symmetric tridiagonal matrix.
(d) Transformation of the eigenvectors of the tridiagonal matrix to the original matrix in step (a).
(e) Multiplication of a complex matrix by a complex unitary matrix.

3.2 NAG Names and ScaLAPACK Names

As well as the NAG routine name (beginning F08), the table in Section 3.4 shows the ScaLAPACK double
precision routine names. The routines may be called either by their NAG names or by their ScaLAPACK
names. References to Chapter F08 routines in the Manual normally include the ScaLAPACK double
precision names, for example, F08AEFP (PDGEQRF).

The ScaLAPACK routine names follow a simple scheme. Each name has the structurePXYYZZZ, where
the components have various meanings. With respect to the routines in this chapter the components have
the following meanings:

X the second letter indicates the data type (real or complex) and precision

D real, double precision (in Fortran, DOUBLE PRECISION)
Z complex, double precision (in Fortran, COMPLEX*16)

(for real and complex, single precision, S and C respectively)

YY the third and fourth letters indicate the type of the matrix A, for example:

GE general
OR orthogonal
UN unitary

ZZZ the last three letters indicate the computation performed, for example:

QRF QR factorization
GQR generate the orthogonal or unitary matrix Q after the QR factorization
MQR apply the orthogonal or unitary matrix Q to a general matrix without forming Q explicitly

Thus PDGEQRF performs the QR factorization of a real general matrix.

3.3 Parameters Conventions

3.3.1 Option parameters

Most routines in this chapter have one or more option parameters, of type CHARACTER. The
descriptions in Section 4 of the routine documents refer only to upper-case values (for example ’N’
or ’T’); however in every case, the corresponding lower-case characters may be supplied (with the same
meaning). Any other value is illegal.

A longer character string can be passed as the actual parameter, making the calling program more
readable, but only the first character is significant. For example:

CALL F08AGFP (’left’, ’transpose’, . . .)

3.3.2 Problem dimensions

It is permissible for the problem dimensions (M, N or K) to be passed as zero, in which case the
computation is skipped. Negative dimensions are regarded as an error.

[NP3344/3/pdf] F08.9

Introduction – F08 NAG Parallel Library Manual

3.3.3 Matrix data

In all routines in this chapter the local elements of a matrix are stored in a one-dimensional array. For
example, the local elements of the mA by nA matrix A can be stored in the real array A(∗). However, it
is more convenient to consider A as a two-dimensional array of dimension (LDA,∗), where LDA must be
greater than or equal to the number of rows of A stored in the specific row of the processor grid and the
array A must have a number of columns greater than or equal to the number of columns of A stored in
the specific column of the processor grid. Further information about the distribution of the matrix over
the participating processors are encapsulated in an integer array called an array descriptor. Such a
descriptor is associated with each distributed matrix. The entries of the descriptor uniquely determine
the mapping of the matrix entries onto local processors’ memories. Moreover, with the exception of the
local leading dimension and the Library context, the descriptor array elements are global, characterising
the distributed matrix. As an example, in the QR factorization and the associated routines, a descriptor
array of dimension (9), say IDESCA, would store the following information:

IDESCA(1) descriptor type: for cyclic two-dimensional block distribution this must be set to 1;

IDESCA(2) the Library context, usually returned by a call to the Library Grid initialisation routine
Z01AAFP;

IDESCA(3) mA, the number of rows of A;

IDESCA(4) nA, the number of columns of A;

IDESCA(5) Mb, the blocking factor used to distribute the rows of A, i.e., the number of rows stored in
a block;

IDESCA(6) Nb, the blocking factor used to distribute the columns of A, i.e., the number of columns
stored in a block;

IDESCA(7) the processor row index over which the first row of A is distributed;

IDESCA(8) the processor column index over which the first column of A is distributed;

IDESCA(9) the leading dimension (LDA) of the local array A storing the local blocks of A.

In general, the descriptor array does not change throughout the life cycle of the matrix with which it
is associated.

It is possible to reference an m by n submatrix of A, for example A(iA : m + iA − 1, jA : n+ jA − 1),
by specifying the four parameters IA = iA, JA = jA, M = m and N = n, in the interface of the routine
called.

77777777777777
77777777777777
77777777777777
77777777777777
77777777777777
77777777777777
77777777777777

5 3 4 5 3 3 4
2 0 1 2 0 0 1

5 3 4 5 3 3 4
2 0 1 2 0 0 1
5 3 4 5 3 3 4
2 0 1 2 0 0 1

5 3 4 5 3 3 4
2 0 1 2 0 0 1
5 3 4 5 3 3 4
2 0 1 2 0 0 1

5 3 4 5 3 3 4
2 0 1 2 0 0 1

IA−1

MIDESCA(3)

IDESCA(4)

JA−1

4 5 3 4 5
1 2 0 1 2

4 5 3 4 5
1 2 0 1 2
4 5 3 4 5
1 2 0 1 2

4 5 3 4 5
1 2 0 1 2
4 5 3 4 5
1 2 0 1 2

4 5 3 4 5
1 2 0 1 2

N

Figure 3
Referencing a submatrix

Figure 3 illustrates graphically the meaning and use of the parameters M, N, IA and JA and of some of
the entries of the array descriptor IDESCA. The case depicted shows a matrix distributed over a 2 × 3

F08.10 [NP3344/3/pdf]

F08 – Least-squares and Eigenvalue Problems (ScaLAPACK) Introduction – F08

logical grid of processes. The first row of the matrix is stored in the second row of the grid (IDESCA(7)
= 1), and the first column is stored in the third column of the grid (IDESCA(8) = 2). The index within
each block refers to the processor (numbered from 0 to 5) which stores that block.

If the whole matrix is referenced, then, obviously, IA = 1, JA = 1 M = IDESCA(3) = mA and N =
IDESCA(4) = nA.

In general, submatrices must start on the boundary between blocks, i.e., mod(IA−1,Mb) = 0 and
mod(JA−1,Nb) = 0. Exceptions to this rule are described in the documents for the individual routines.

3.3.4 Error-handling and the diagnostic parameter INFO

Routines in this chapter do not use the usual NAG Parallel Library error-handling mechanism, involving
the parameter IFAIL. Instead they have a diagnostic parameter INFO. (Thus they preserve compatibility
with the ScaLAPACK specification.)

Whereas IFAIL is an Input/Output parameter and must be set before calling a routine, INFO is purely
an Output parameter and need not be set before entry.

INFO indicates the success or failure of the computation, as follows:

INFO = 0 indicates successful termination;

INFO = −(i ∗ 100 + j) indicates an error in the jth component of the ith argument (for example, a
component of an array descriptor);

INFO = −i indicates an error in the ith argument;

INFO > 0 indicates an error detected during execution.

It is essential to test INFO on exit from the routine (this corresponds to a soft failure in terms of the
usual error-handling terminology used for the rest of the Library), both for argument errors and errors
detected during execution.

If INFO �= 0 explanatory error messages are output from the root processor (or processor {0, 0} when
the root processor is not available) on the current error message unit (as defined by X04AAF).

It should also be noted that calling routine Z02EAFP to reduce the amount of error checking does not
disable all the argument checking in F08 routines. Some global argument checks will be omitted, but for
compatibility with ScaLAPACK, the checks performed by ScaLAPACK are retained (see Blackford et al.
[2] for details).

3.4 Table of Available Routines

3.4.1 QR factorization

Factorize Generate
matrix Q

Apply
matrix Q

QR factorization, real matrices F08AEFP
PDGEQRF

F08AFFP
PDORGQR

F08AGFP
PDORMQR

QR factorization, complex matrices F08ASFP
PZGEQRF

F08ATFP
PZUNGQR

F08AUFP
PZUNMQR

3.4.2 The Symmetric Eigenvalue Problem (SEP)

Tridiagonalize Compute
eigenvalues

Compute
eigenvectors

Compute
eigenvectors

of tridiagonal of tridiagonal of original
matrix matrix matrix

SEP F08FEFP
PDSYTRD

F08JJP
PDSTFEBZ

F08JKP
PDSTFEIN

F08FGFP
PDORMTR

[NP3344/3/pdf] F08.11

Introduction – F08 NAG Parallel Library Manual

3.4.3 The Hermitian Eigenvalue Problem (HEP)

Tridiagonalize Compute
eigenvalues

Compute
eigenvectors

Compute
eigenvectors

of tridiagonal of tridiagonal of original
matrix matrix matrix

HEP F08FSFP
PZHETRD

F08JJFP
PDSTEBZ

F08JXFP
PZSTEIN

F08FUFP
PZUNMTR

Each entry gives

the NAG routine name

the double precision ScaLAPACK routine name.

F08.12 (last) [NP3344/3/pdf]

